Arkema Coatings Resins Limited

Solvent Management Plan 2016

Report	LSO170832

0

21 September 2017

Revision

Date

SOLVENT MANAGEMENT PLAN 2016

Operator	Arkema Coatings Resins Limited		
Installation	Laporte Road Stallingborough Grimsby North East Lincolnshire DN41 8FG		
Contact	Mr J Cribbes		
Reference	LS0170832		
Report Date	21 September 2017	Revision	0
Test laboratory			
Environmental S Unit D Bankside Trade I Cirencester Gloucestershire GL7 1YT	cientifics Group Limited ^D ark		
) 1285 700593 rd@esg.co.uk		
Author		Approved	
Dr N Ford MM 02 084 Level 2 – TE1 TE	N Ro-Cl 52 TE3 TE4	Mr M Davies Operations Manager MM 02 087 Level 2 – TE1 TE2 TE3	ریک میں ت 1544

Issue history

Revision	Date	Approved	
170832,0	21 September 2017	N Ford	N Rord
First issue			

CONTENTS

		Page No.	
Cover		1	
Issue history		2	
Summary		4	
1	Introduction	5	
2	Site and process operations	5	
	 2.1 Delivery of raw materials 2.2 Polyester mixing building 2.3 Gelcoats building 2.4 Cleaning operations 2.5 Polynt building 2.6 Waste disposal 	5 7 7 8 8 8	
3	Methodology	10	
4	Determination of solvent releases	12	
	 4.1 Solvent purchases 4.2 Releases from powered vents 4.3 Releases from bulk storage vessels 4.4 Fugitive releases from natural ventilation of buildings 4.5 Releases of residual solvent in emptied containers 4.6 Residual solvent in wastes sent for disposal 4.7 Solvent balance and limit compliance 	12 12 13 13 14 14 14	
Appendix 1	Arkema Coating Resins Limited, Stallingborough site	16	
Appendix 2	Solvent purchase records 2016	18	
Appendix 3	Solvent releases from powered vents	20	
Appendix 4	Solvent releases from bulk storage vessels	23	
Appendix 5	Fugitive releases from natural ventilation	32	
Appendix 6	Releases from empty containers sent for recycling 36		

Summary

Arkema Coatings Resins Limited operates a batch structural resins manufacturing process which has been authorised in accordance with the Environmental Protection Act 1990. In order to comply with the requirements for solvent emission activities in the Industrial Emissions Directive it is necessary to demonstrate that solvent losses from process operations do not exceed 3% of the total solvent input.

A solvent balance in accordance with the methodology provided in guidance note PG 6/44(11) has been undertaken based on solvent purchase and disposal records provided by Arkema Coating Resins Limited and site measurements.

For the period January to December 2016 the assessment indicated a total solvent release from process operations equivalent to 1.1% of the total solvent input. The assessment therefore indicates compliance with the applicable total emission limit value for the period under review.

1 Introduction

Arkema Coatings Resins Limited (Arkema) operates a batch structural resins manufacturing process which has been authorised in accordance with the Environmental Protection Act 1990. Arkema are obliged to meet the requirements of process guidance note PG 6/44 (11) which take into account the requirements for solvent emission activities in the Industrial Emissions Directive (European Union Directive 2010/75/EU).

Arkema have opted for the "Total Emission Limit Value" option (PG 6/44 (11) SE Box 6, IED Article 59, Annex VII, Parts 2, 3 & 4) as their preferred method of showing compliance with solvent emission limits. As Arkema use more than 1000 tonnes of solvent per annum their total emission limit value is 3% of their solvent input.

Arkema contracted Environmental Scientifics Group (ESG) to prepare a solvent management plan to determine the annual total solvent emission and solvent input from their resin manufacturing process in order to determine compliance with the applicable emission limit value.

This solvent management plan covers the period January to December 2016.

2 Site and process operations

The Arkema site is located at Stallingborough near to Immingham Docks around 6 km from Grimsby. Figure 1 illustrates the site location and boundary.

The site currently operates a structural resins manufacturing process with two main generic products; unsaturated polyester resins (UPR) and Gelcoats. These are manufactured in two dedicated buildings; the Polyester Mixing Building (PMB) and Gelcoats building respectively as shown in Appendix 1, Figure A1.1.

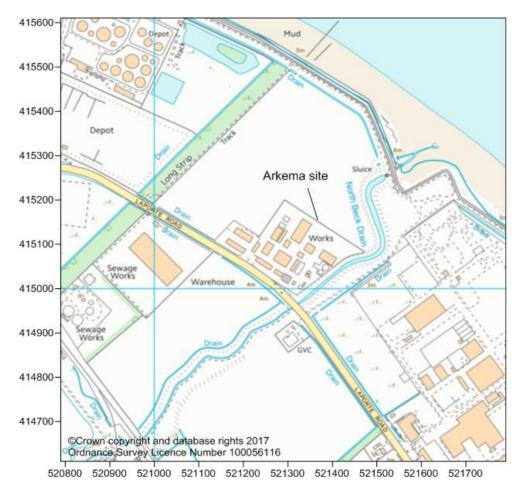
The manufacturing process comprises the mixing of base resins with styrene and other materials as appropriate for the product. Calcium carbonate is used as a filler where required.

2.1 Delivery of raw materials

The base resin is imported from Europe, largely by road tanker and offloaded directly to on-site storage tanks. The storage tanks currently in use are denoted as polyester resin hold tanks (PRHT) A to F, K to M and T to V. These are located in two distinct areas as shown in Figure A1.1. Off-loading to tanks K, L, M, T, U and V use a plc controlled manifold loading system, while off-loading to tanks A to F is by pressure transfer using a dedicated line for each tank.

The tank farms are contained within concrete bunds. Resins are transferred by pipe to the production buildings.

Base intermediate resins are also delivered in drums or intermediate bulk containers (IBCs) and are stored in a dedicated area on the northern boundary of the site.


Styrene is also delivered by road tanker and stored in a dedicated tank (RMT01) within a bunded area.

All storage tanks will be subject to some release of volatile organic compounds (VOCs) due to breather losses and displacement during filling.

Other liquid materials are delivered in a range of containers with 20–205 l drums and 1000l IBCs. These also have a dedicated storage area (see Figure A1.1).

Figure 1 Arkema site location

2.2 Polyester Mixing Building

In the Polyester Mixing Building (PMB) base unsaturated polyester resins are mixed with styrene and other materials in a cold mixing process. The range of other materials added will depend on the required characteristics of the final product resin. The PMB building has eight mixing vessels with batch capacities of between 1 and 18 tonnes.

Base resin is generally metered to the mixing vessels from the bulk storage tanks using a closed system, although smaller amounts of resin may be added from drums or IBCs using a semi-closed pumped transfer system. Other amounts of fillers and additives may be added manually depending on the product specification. The resin metering systems limit the release of VOCs during transfer, although there will be some release, together with fugitive releases during manual addition.

Mixer 8 has a closed system allowing addition of calcium carbonate from its bulk silo. In order to remove the air that is entrained during addition of powdered materials a vacuum is required on mixer 8. The vacuum is applied for around 30-45 minutes per batch and will result in a release of VOCs.

Following completion of mixing samples will be taken for quality control checking within the PMB laboratory. This procedure will also give rise to a release of VOCs. Further additions of materials, mixing and QC checks may be required in order to meet the final product specification.

Final products are pumped from the mixing vessels, via filtration systems, to filling points for pails, drums and IBCs or to road tankers in the case of bulk batches These operations also have the potential for VOC release.

There will be additional releases of VOCs during the changing of filters and in the cleaning of the mixers, although this is minimised as far as possible by the use of dedicated mixers for certain products.

The PMB building and laboratory is equipped with a range of local exhaust ventilation (LEV) systems to capture released VOCs with subsequent emission to atmosphere. There will also be some release of VOCs from the general building atmosphere due to natural building ventilation.

The PMB building has a production capacity of around 17,500 tonnes resin per year. Operation is normally on 7 day a week basis for 16 hours/day. There are plant shutdowns at Easter and Christmas of around 14 days.

2.3 Gelcoats Building

Operations in the Gelcoats building are similar to those in the PMB, although on a smaller scale with 10 mixers ranging in capacity from 20 kg to 6 tonnes. The process also allows further blending of the base gelcoat to meet various customer specifications.

The main production area includes eight small mixers, container filling points and materials storage areas. Although base resin and styrene is loaded using closed transfer systems from the bulk storage tanks, there is manual loading of all other raw materials. Releases of VOCs can therefore occur during loading, mixing, sampling and containerisation stages of the process.

Mixers 6 and 8 are high speed dispersion mixers which require a vacuum to remove entrained air. This operation will also result in a release of VOCs.

The final product is packaged in pails, drums or IBCs. There is no bulk transfer facility in the Gelcoats process.

The Gelcoats building also houses a laboratory for QC checking with associated potential for release of VOCs.

The Gelcoats building and laboratory is equipped with a range of LEV systems to capture released VOCs with subsequent emission to atmosphere. There will also be some release of VOCs from the general building atmosphere due to natural building ventilation.

The Gelcoats building has a production capacity of around 3,000 tonnes resin per year. Operation is normally on 5 day a week basis for 8 hours/day. There are plant shutdowns at Easter and Christmas of around 14 days.

2.4 Cleaning operations

Process equipment cleaning is performed in situ. Fixed mixing vessels in both production buildings are cleaned, where necessary between batches by recirculating styrene around the system, and where possible, using the mixing blades to create a spray effect on the walls of the vessel. Whilst these operations are ongoing the vessels remain sealed. By recirculating styrene around the system associated pipework, pumps and filters etc. are also cleaned.

Occasionally, where required for maintenance purposes, mixing vessels and storage tanks may be cleaned by external contractors using high pressured water jetting equipment. This method would typically be used where entry may be required into a vessel for inspection or non-destructive testing.

These operations will result in a release of VOCs and produce a solvent containing liquid waste stream for disposal.

Physical cleaning techniques are also used for small items of equipment, such as removable mixing blades, using brushes and small quantities of styrene and acetone. Laboratory equipment and some process valves are cleaned using acetone.

Dedicated cleaning locations are served by LEVs.

2.5 Polynt Building

Arkema manufacture resins under an operational agreement with Polynt Composites UK, who have a building containing administration offices and a laboratory within the site boundary. As part of the research and development activities undertaken within this building there is a demonstration spray booth and laboratory which both give rise to releases of VOCs. The affected areas are served by LEVs.

2.6 Waste disposal

The site generates two main streams of solvent containing wastes:

Residual solvent in emptied drums and IBCs General process wastes

Arkema return empty drums and IBCs for recycling following use. It is assumed that there will be some residual solvent in each container which will represent a solvent loss from the process. When 'emptied' Arkema contract R Spivey and Sons and Schutz UK to recycle drums and IBCs respectively.

Arkema generate a number of process waste streams, although only the waste designated a 'hazardous' has a significant solvent content. This waste is sent off-site to an appropriately registered contractor for disposal.

The hazardous waste streams include:

Waste mixed polyester resin (liquid) – from line clearance, container residue draining, filter waste etc. which is removed in drums and IBCs.

Retain tins containing resin – mixed polyester resin / Gelcoat resin in 0.5 l tins, which are placed into an empty 205l drum (still in the tins) for disposal.

Solid waste – waste liquid resin and Pyrosorb from any spillages or leaks which are removed from site in 205 l drums.

Contaminated pails and cans – drained pails and cans which have previously contained pigment or resin are placed onto a pallet, shrink wrapped for disposal.

Arkema maintain a register of disposals of waste designated as hazardous.

3 Methodology

Arkema's solvent management plan is based on the British Coatings Federations (BCF) guidance ("The VOC Workbook – Guidance for coatings manufacturing installations: demonstrating compliance with PG6/44 VOC emission limits and preparing solvent management plans") as recommended in PG 6/44 (11).

The basis of the method is to determine solvent input to the process and solvent output in terms of releases. The VOC Workbook defines general input and output streams for coating processes. Those considered applicable to Arkema's Stallingborough site are summarised in Table 1.

IED		Code	Applicability to Arkema	
Input	S			
	Purchases of solvent and	11.1	Purchased solvents	
11	solvent containing preparations	11.2	Solvent in purchased resins	
	solvent containing preparations	11.3	Solvent content of other purchased materials	
Outpu	uts			
	Solvent emissions in waste	01.1	Powered vents (e.g. local exhaust extraction)	
01		01.4	Bulk storage vessel (solvents and resins) breather	
gases		01.4	vents	
04	Uncaptured emissions	04.1	Fugitive releases from the natural ventilation of	
04	oncaptured emissions	04.1	buildings	
		06.1	Residual solvent or solvent containing materials in	
06	Solvents in collected wastes	00.1	emptied drums and IBCs sent for disposal	
00	50 Solvents in collected wastes		Solvents in collected wastes	Solvent containing liquid and solid waste sent for
		00.2	disposal	

Table 1Process solvent flows

The solvent inputs and outputs in Table 1 were determined for the assessment period using information from Arkema, site measurements and methodologies recommended in the 'VOC Workbook'. Table 2 summarises the methodology employed to determine the relevant solvent input and output flows.

Table 2Determination of process solvent flows

Code	Activity	Determination methodology
11.1	Purchased solvents	Records of purchases of solvent and solvent containing
11.2	Solvent in purchased resins	materials were provided by Arkema for the assessment
11.3	Solvent content on other	period (Appendix 2).
	purchased materials	
01.1	Powered vents (e.g. local exhaust extraction)	Releases of volatile organic compounds from the exhaust vents serving the processes were measured by ESG over the 3 to 6 July and 22 to 23 August 2017 (ESG reports LN013703, 27 July and 28 August 2017). Methodology in the VOC Workbook, together with Arkema's estimates of vent operating time, were then used to determine the annual releases of VOCs (Appendix 3)
01.4	Bulk storage vessel (solvents and resins) breather vents	Arkema provided details of the resin/solvent throughput for each of the 13 bulk storage tanks at the Stallingborough site. VOC Workbook methodology (see Appendix 4) was then used to determine releases of solvents from tank breathing and filling.

Code	Activity	Determination methodology
04.1	Fugitive releases from the natural ventilation of buildings	The VOC content of the ambient atmosphere in the PMB and Gelcoats building and the ventilation rate was measured by ESG on the 22 and 23 August 2017. Based on these and an estimate of the duration of access door opening a fugitive solvent release rate was determined (see Appendix 5).
06.1	Residual solvent or solvent containing materials in emptied containers sent for disposal	The number of drums and IBCs of solvents and solvent containing materials that were emptied and subsequently removed from site over the assessment period was determined from purchase records provided by Arkema. The loss of solvent was determined based on an assumed residual solvent content (Appendix 6).
06.2	Solvent containing liquid/solid waste sent for final disposal	Records of the disposals of solvent containing materials for the assessment period were provided by Arkema. The solvent removed from site in waste was determined based on the gross tonnage of waste and mean solvent content of purchased materials.

4 Determination of solvent releases

The methodology in Table 2 was employed to determine the solvent input and output from Arkema's resin manufacturing process at their Stallingborough site. The following section summarises the determination of solvent inputs and outputs in the context of the allowable total emission limit value.

4.1 Solvent purchases

Arkema supplied details of all solvent and solvent material containing purchases for 2016 as detailed in Appendix 2. Analysis of these records indicated the process solvent inputs in Table 3.

Table 3Summary of solvent purchases

ltem		Total tonnes	Mean solvent content %	Total solvent tonnes
11.1	Purchased solvents (Styrene)	1771	100	1771.0
11.2	Solvent in purchased resins (bulk)	13063	31.1	4062.7
	Solvent in purchased resins (IBCs, drums)	2158	31.0	669.0
11.3	Solvent content of other purchased materials	1950	19.0	370.4
11 Tota	al	18942	36.3	6873.1

4.2 Releases from powered vents

The PMB and Gelcoat building process areas and laboratories are served by a range of LEV systems which release to atmosphere via 14 release points as summarised in Table 4 and located as shown in Figure A1.2.

Table 4Summary of powered vent release points and releases

Point	Location	Source	Solvent release (kg/year)
A1	PMB	PMB Mixer 8 vacuum vent	47
A2	PMB	Mixer 8 vent (not powered)	2
A3	PMB	PMB LEV for mixers 1-9	1527
A5	Gelcoats	Mixers 6 and 8 LEV	1130
A6	Gelcoats	Colour mixer LEV	622
A7	Gelcoats	Laboratory LEV	291
A8	Gelcoats	Spray booth vent	156
A9	Yard	Styrene storage tank vent	9
A29	Polynt	Demonstration area LEV	10
A30	Polynt	Laboratory LEV	450
A31	Yard	Gelcoats vacuum seal vent	15
A32	Engineering workshop	Workshop LEV	10
A35	PMB	Laboratory LEV	136
A36	PMB	Drumming off mixer 8 LEV	28
01.1 Total sc	lvent release from powered vent	ts (t/annum)	4.4

It should be noted that A2 is not a powered vent, but is included in this section as the release composition is common with the powered vents.

In order to determine the annual releases from these vents exhaust VOC concentrations, and where possible volume flow rates, were measured and combined with Arkema's estimate of annual operating hours to determine a mass release of solvent. Where flow rates could not be measured due to access limitations LEV test results from 2016 were employed.

Detailed methodology and calculations are presented in Appendix 3.

4.3 Releases from bulk storage vessels

There are 13 bulk storage vessels which will each be subject to losses of VOCs. The two routes for loss are due to filling and breathing. Breathing losses are caused by vapour being expelled from the tank either by thermal expansion or a change in atmospheric pressure. Filling losses occur during filling through the displacement of the air and vapour by the rising level of the liquid.

Appendix 4 provides details of the methodology and calculation of solvent losses from the bulk storage vessels. These calculations are summarised in Table 5.

Tank		Solvent (kg/annum)	
Tank	Filling losses	Breathing losses	Total release
А	89.6	21.7	111.3
В	55.7	21.7	77.4
С	37.6	21.7	59.3
D	0.0	0.0	0.0
E	13.1	21.7	34.7
F	7.4	21.7	29.1
К	9.3	16.6	25.9
L	0.0	0.0	0.0
М	15.5	16.6	32.1
Т	8.3	11.5	19.8
U	5.5	11.5	16.9
V	25.3	11.5	36.7
RMT01	46.8	6.0	52.7
01.4 Total releases from bulk storage vessels (tonnes/annum) 0.5			

Table 5 Summary of bulk storage vessel and associated solvent losses

4.4 Fugitive releases from natural ventilation of buildings

The PMB and Gelcoat buildings will be subject to loss of VOCs due to the natural ventilation of the buildings. The methodology and details assessment of losses for these buildings are presented in Appendix 5 and summarised in Table 6.

Table 6Summary of solvent losses by natural ventilation

Building		Gelcoat	PMB
Annual fugitive release	kg styrene/annum	17881	8186
04.1 Total annual solvent release by natural ventilation (tonnes/annum)		20	5.1

4.5 Releases of residual solvent in emptied containers

Arkema return empty drums and IBCs for recycling following use. It is assumed that there will be some residual solvent in each container which will represent a solvent loss from the process. Both solvent containing resins and other solvent containing materials are delivered in drum and IBCs. When 'emptied' Arkema contract R Spivey and Sons and Schutz UK to recycle drums and IBCs respectively. It is assumed that the containers leaving site for recycling contain residual material equivalent to 1% of that originally present. This represents a loss of solvent from the process.

Based on the recorded resin and raw material deliveries in Appendix 2 the losses of solvent due to recycling of spent containers are estimated in Appendix 6 and summarised in Table 7.

a labe / Summary of solvent losses in containers removed from site	Table 7	Summary of solvent losses in containers removed from site
--	---------	---

Container	No. of containers recycled	Solvent content kg
Raw materials in drums	1206	346
Raw material in IBCs	372	3308
Resins in drums	343	213
Resins in IBCs	1346	4173
06.1 Solvent losses in emptied contair	8.0	

4.6 Residual solvent in wastes sent for disposal

Arkema generate a number of process waste streams, although only the waste designated a 'hazardous' has a significant solvent content. This waste is sent off-site to an appropriately registered contractor for disposal (see section 2.6).

Arkema recorded the total hazardous waste quantity disposed of in 2016 as 106.8 tonnes. For the purposes of determining a solvent loss in this stream it is assumed that the solvent content is equivalent to the mean solvent content of all materials purchased in 2016. An analysis of purchased solvent containing materials in 2016 (Table 3) indicates a mean solvent content of 36.3 %. It is therefore considered that the solvent lost from the process in wastes sent for disposal in 2016 is 38.8 tonnes as summarised in Table 8.

Table 8 Summary of solvent losses in wastes sent for disposal

Quantity of waste removed	tonnes	106.8
Mean solvent content	%	36.3
06.2 Solvent losses in waste sent for disposal (tonnes/annum)		38.8

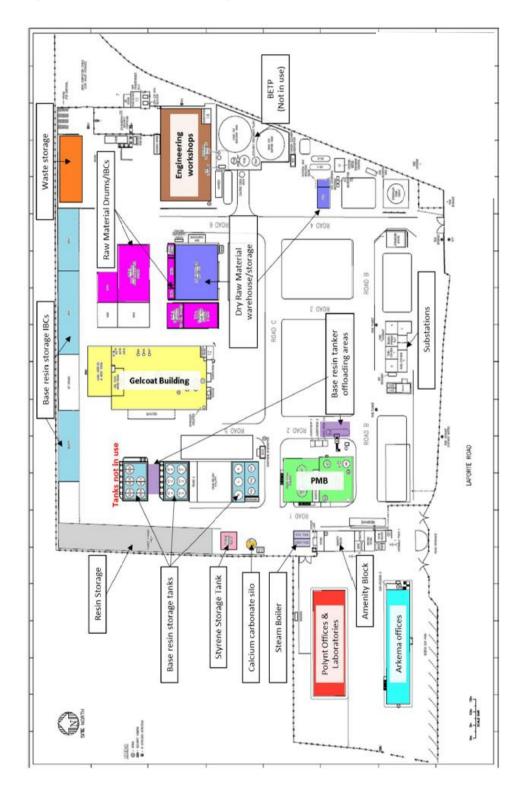
4.7 Solvent balance and limit compliance

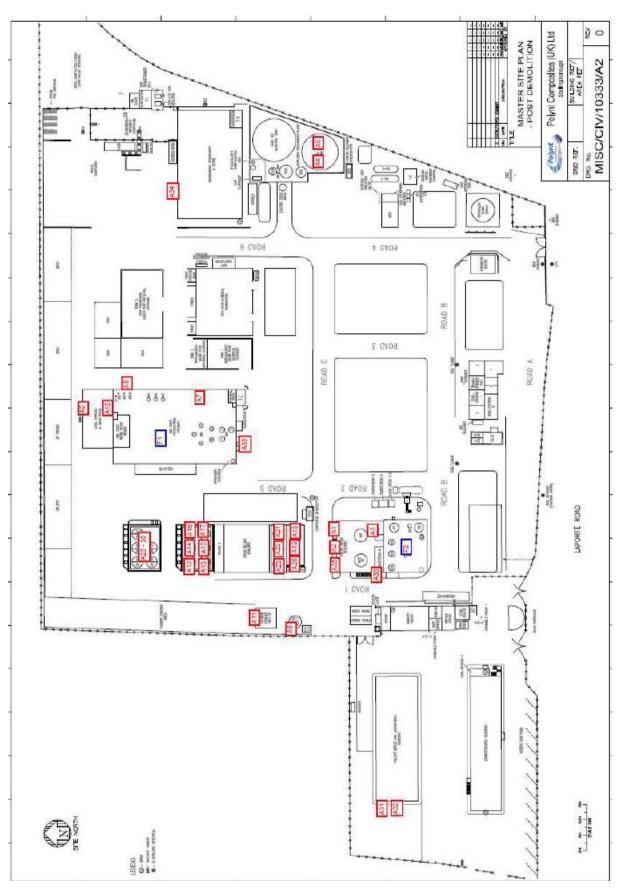
Based on the assessments of process solvent input and outputs and the methodology of PG 6/44(11), Table 9 presents the process solvent balance for 2016.

Table 9Solvent flows January to December 2016

Activity		Solvent	flow
Activit	y	tonnes	% of input
11.1	Purchased solvents	1771.0	
11.2	Solvent in purchased resins	4731.7	-
11.3	Solvent content on other purchased materials	370.4	
Solven	t input	6873.1	
01.1	Powered vents (e.g. local exhaust extraction)	4.4	0.064
01.4	Bulk storage vessel (solvents and resins) breather vents	0.5	0.007
04.1	Fugitive releases from the natural ventilation of buildings	26.1	0.379
06.1	Residual solvent or solvent containing materials in emptied containers sent for disposal	8.0	0.117
06.2	Solvent containing liquid/solid waste sent for final disposal	38.8	0.565
Solven	t output	77.8	1.132

Determination of the solvent flows and application of the calculation guidance in the PG 6/44(11) and the VOC Workbook indicates that the total solvent release for the period January to December 2016 was equivalent to 1.1% of the solvent input. This is below the applicable total emission limit value of 3%.


This analysis also provides some indication of the major sources of solvent loss and areas where mitigation might be effective. Fugitive releases by natural ventilation and solvent losses in wastes for disposal account for over 80% of total solvent losses.


Appendix 1 Arkema Coating Resins Limited, Stallingborough site

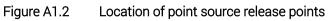

Figures A1.1 and A1.2 illustrate the site arrangement and locations of point source emission points respectively.

Figure A1.1 Arkema site arrangement

Appendix 2 Solvent purchase records 2016

Arkema provided the following information on solvent and solvent containing raw material purchases for 2016.

- I1.1 Bought in new solvents (styrene)
- I1.2 Solvents in bought in resins

Amount of solvent and resin delivered by tanker and transferred to bulk storage tanks

Year Type	Tonnes	
2016 Bulk Resin Tankers	13066	See breakdown below, per
Styrene Tankers	1771	storage tank
	14837	

Amount of resins delivered in drums and IBCs and approximation of container volumes and number of each.

Year	Түре	Container Qty	Tonnes	Solvent Content %	Solvent quantity (T)
20	16 Overall	1689	2158	31%	
20	16 Drums (205 Litres)	343	679	31%	210.49
	IBCs (1000Litres)	1346	1479	31%	458.49
		1689	2158		668.98

The specific material in each of the bulk storage tanks and either the individual usage for each vessel or the total amount of each material used.

			Solvent	Solvent			
Product	Storage Tank	Tonnes	Content %	quantity (T)			
IP13239	PTA	4380	35%	1533	Note: IP codes relate to base polyester resin storage tanks		
IP66109	PTB	2723	28%	762.44			
IP61119	PTC	1839	26%	478.14			
IP45120	PTE	638	26%	165.88			
IP45121	PTF	362	33%	119.46			
IP25246	PTK	454	35%	158.9		t	tsolvent
IP13239	PTL	-	35%	0	Bulk resin	13063	4063
IP61115	PTM	757	30%	227.1	Drum and IBC resin	2158	669
IP18125	PTT	408	34%	138.72	Raw materials	1950	370
IP92223	PTU	268	36%	96.48	Styrene	1771	1771
IP15239	PTV	1234	31%	382.54	total in	18942	6873
Styrene	RMT 01	1771	100%	1771			
		14834		5833.66			

I1.3 Bought in raw materials

Item Code	Description	Annual Quantity (Kg)	Solvent Content	Solvent Quantity	Container Typ
11003	(R2072) 1,4 NAPTHAQUINONE (R)	2,262	0%	-	KEGS
1005	(VRM986) SILICA FINE (G)	66,880	0%	-	BAGS
.1010	(VRM706) ALPHA METHYL STYRENE (B)	4,320	100%		DRUMS
.1014	(R683) PROPYLENE GLYCOL (G) (R788) PARA TERTIARY BUTYL CATECHOL (Y)	88,720	100%	88,720	BAGS
1019	HYDROQUINONE	800	0%		KEGS
1021	(R1637) CHOLINE CHLORIDE (G)	1,140	0%	-	DRUMS
1027	(R1312) MONOTERTIARY BUTYL HYDROQUINONE (B)	100	0%		KEGS
1028	(R1573) TOLUHYDROQUINONE (B)	400	0%	-	KEGS
1032	(VRM2020) COPPER NAPTHENATE 6% (B)	1,080	75%	810	DRUMS
1031	ACETYLE ACETONE	1,135	100%	1,135	DRUMS
1044	(R1575) ACCELERATOR NL65/100 - DMPT (R)	168	0%	-	KEGS
1048	(R1313) DIETHYLANILENE (R)	3,040	0%	-	DRUMS
1049	(R1779) DIMETHYL ANILENE (R)	1,900	0%	-	DRUMS
1119	ARQUAD 0-50	480	35%	168	DRUMS
1122	(VRM2012) BYK R 605 (Y)	-	45%		DRUMS
1135 1176	BISOMER PTE (VRM1001) BYK-S 750 (G)	2,400 6,435	0%		DRUMS
1170	(VRM1131) BYK 052 (B)	10,325	86%	8,828	DRUMS
1180	(VRM930) BYK A 555		75%	-	DRUMS
1181	BYK 163	75	85%	64	DRUMS
1200	(R568) STYRENE MONOMER (Y)	1,771,000	100%		BULK TANKER
1203	(R1442) METHYL METHACRYLATE MONOMER (Y)	98,020	100%	98,020	
1214	(R1477) POLYOXYETHYLENE 20 SORBITAN /SURFALINE20/TWEEN20 (G)	13,120	0%	-	IBC
1222	(VRM1015) PAT 657 C (G)	7,560	0%	-	DRUMS
1223	(F326) COCONUT OIL (G)	43,040	0%	-	IBC
2007	MARTINAL ON 313	158,330	0%		BAGS
2202	(VRM2023) BYK A 560 (B)	5,100	86%	4,386	DRUMS
2301	GARAMITE 1210	100	0%	-	DBUILT
0137	ACCELERATOR COBALT FREE	400	19%		DRUMS
1265	(R1337) N-PEL 128 (Y) (R1700) 4- METHOXYPHENOL (Y)	7,920	0%		DRUMS
1271 1439	(VRM411) PHENO THIAZINE (Y)	100	0%	-	KEGS
1602	ANTIMONY TRIOXIDE	15,750	0%		BAGS
5342	2,5-DI-TERT-BUTYL HYDROQUINONE (DTBHQ) (B)	100	0%	-	KEGS
5336	PAT 672	100	0%	-	KEGS
5565	(R173) ACETONE (B)	2,748	100%	2,748	DRUMS
5567	Solid 1,2,3,6-Tetrahydrophthalic anhydride	11,000	0%	-	BAGS
5576	(R1954) DOWANOL DPM (G)	1,560	100%	1,560	DRUMS
5583	(R2067) PHENYL DIETHANOLAMINE (R)	5,200	0%	-	DRUMS
5588	(R2077) DIETHYL ACETOACETAMIDE(B)	2,184	0%	-	DRUMS
5594	(R215) TRIETHANOLAMINE (R)	1,000	0%	-	DRUMS
5631	(R834) HORDARESIN NP70 (G)	62,000	0%	-	BAGS
5646	(VRM555) PIGMENT SILVER GREY BS 10A03 (G)	6,200	0%		DRUMS
5647	(VRM558) OIL BLUE A DYE (G)	15	0%		KEGS
5680	(VRM830) TRIMETHYL HYDROQUINONE (Y)	625	0%		KEGS
5681	(VRM831) NUOSYN POTASSIUM 10 (R)	2,850	38%	1,069	DRUMS
5691 5695	(VRM876) LOWINOX 44 S 36 (B) (VRM885) SATINTONE SPECIAL (G)	100	0%	-	BAGS BAGS
5715	(VRM906) MONOMIX G (G)	269,594	0%	-	BAGS
5719	(VRM912) COBALT HYDROXY TEN-CEM 21% (R)	2,866	10%	287	DRUMS
5729	(VRM955) KRONOS 2160 (G)	42,000	0%	-	BAGS
5730	(VRM956) AEROSIL R 972 (G)	2,640	0%	-	BAGS
5737	(VRM971) DECABROMODIPHENYL OXIDE (B)	3,025	0%	-	BAGS
5746	(D412) AEROSIL 200 HV (G)	47,520	0%	-	BAGS
5995	(VRM1002) ISODECANE (G)	48,680	100%	48,680	IBC
6039	(VRM996) ETHYL DIGLYCOL (B)	4,000	100%	4,000	IBC
9061	(VRM1082) EFKA-FA4612 (Y)	1,200	80%	960	DRUMS
9068	EFKA 2020 (B)	35,770	86%	30,762	IBC / DRUMS
9151	(VRM1127) PIGMENT JET BLACK (G)	50	0%	-	DRUMS
9174	(VRM1129) LITHIUM ETHYL HEXANOATE (B)	180	36%		DRUMS
9393	(VRM2016) BYK LPX 20505 (B)	2,160	36%	778	DRUMS
9476 9591	(VRM2010) BYK S 706 (B) (R1003) BUTYLATED HYDROXY TOLUENE (G)	740	40%		DRUMS KEGS
9591	TCPP [FYROL PCF]	237.480	0%	-	IBC / DRUMS
9702	EFKA PB 2720	2,325	63%	1.465	DRUMS
9722	HUNGARIAN PARAFFIN WAX 60/62	1,000	85%		BAGS
9745	COBALT 2-ETHYL HEXANOATE 6% IN WHITE SPIRIT	67,284	75%		
9966	BYK LPN6587 (G)	800	6%		DRUMS
0165	(D949) TIOXIDE RTC90 (G)	256,084	0%		BAGS
0277	(VRM907) ZEOTHIX 177 (G)	5,225			BAGS
0390	DISTITRON 152	29,050	35%		
0475	VRM 670 EPSILON PHTALO BLUE	50			BOX
0476	VRM 675 BASE VIOLET B	50			BOX
0477	(VRM891) PIGMENT YELLOW 970 Y 875 (G)	425			DRUMS
0478 0479	(VRM892) PIGMENT YELLOW 970 Y 842 (G) (VRM893) PIGMENT ORANGE 970 Y 841 (G)	3,375	1%		DRUMS DRUMS
0479 0480	(VRM893) PIGMENT ORANGE 970 Y 841 (G) (VRM894) PIGMENT RED 970 Y 840 (G)	4,425	1%		DRUMS
0480 0481	(VRM894) PIGMENT KED 970 T 840 (G) (VRM895) PIGMENT YELLOW 970 Y 805 (G)	3,550			DRUMS
0481	(VRM895) PIGMENT RED 970 R 845 (G)	125	1		DRUMS
0483	(VRM897) PIGMENT RED 970 R 804 (G)	125			DRUMS
)484	(VRM898) PIGMENT VIOLET 970 M 806 (G)	25			DRUMS
0485	(VRM899) PIGMENT BLUE 970 L 837 (G)	100			DRUMS
0486	(VRM900) PIGMENT BLUE 970 L 847 (G)	180	1%		DRUMS
0488	(VRM902) PIGMENT GREEN 970 G 802 (G)	400	1%		DRUMS
0489	(VRM903) PIGMENT BLACK 970 B 803 (G)	29,240	1%		DRUMS
0490	(VRM904) PIGMENT WHITE 970 W 826 (G)	31,450	1%		DRUMS
0491	(VRM980) PIGMENT RED 970 R 855 (G)	100	1%		DRUMS
0492	VRM 991 JAUNE CITRON	50	1%		DRUMS
0493	VRM 992 JAUNE SAFRAN	250			DRUMS
0650	(R1314) PARAFFIN WAX 52 / 54 (G)	8,240	50%	4,120	BAGS
0708	(VRM887) BENTONE 128 (G)	3,525	0%		BAGS
0758	SOYA LECITHIN	350	0%		DRUMS
0776	DIMETHYL SILICONE [RHODORSIL 47 V 100]	200	0%		BAGS
0782	EVERSORB 74 (Y)		0%		BAGS

Appendix 3 Solvent releases from powered vents

The concentration of volatile organic compounds (VOC) in the exhaust releases from the 12 of the 13 powered exhaust vents were measured by ESG over the 3 to 6 July and 22 to 23 August 2017 (ESG reports LNO13703, 27 July and 28 August 2017).

VOC concentration was reported as a carbon equivalent (e.g. mgC/m³). In order to convert from total carbon to mass of VOC it was assumed that the vapour phase composition of the VOC emission corresponded to the liquid phase composition of the solvents used in the processes served by the vent (i.e. primarily styrene with smaller amounts of propylene glycol, methyl methacrylate, acetone and isodecane).

The partial vapour pressure of each solvent component corresponds to its molar fraction in the vapour. The partial pressure of each solvent in the vapour can be calculated using Antoine's Law:

$$P_i = 10^{\exp\left[A - \frac{B}{(T_{LS} + C)}\right]}$$

where

P_i partial pressure of solvent (kPa).

T_{LS} average daily temperature of the surface of the liquid obtained from the Hull Park East weather station.

A,B & C Antione's constants specific to the individual solvent

The weight fraction of the vapour (W_V) is given by

$$W_i = M_i \left(\frac{P_i}{\sum P_i} \right)$$

where

Mi

Molecular weight of solvent i

The % weight vapour composition (V_i) is given by

$$V_i = 100 \left(\frac{W_i}{\sum W_i} \right)$$

By multiplying the % carbon content of each solvent (C_i) by the % weight vapour composition (V_i) the contribution to the % carbon content of the vapour (CV_i) can be calculated:

$$CV_i = \frac{C_i V_i}{100}$$

By dividing the emission concentration (EC) expressed as total carbon by the sum of the % carbon content of the vapour the emission concentration (ECVOC) is converted to a VOC basis:

$$EC_{VOC} = \frac{100EC}{\left(\sum CV_{i}\right)}$$

Arkema Coatings Resins Limited Stallingborough The annual release of volatile organic compounds from each point (E) is:

$$E = \frac{EC_{voc}Qh}{10^{-6}}$$

where

Q	Exhaust gas volume flow rate (m³/h) at Standard Temperature and Pressure (STP)
h	Annual operating hours (h)

For the period January to December 2016 the solvent releases from the site powered release points were determined as below:

Calculation of vapour composition

Solvent	Mol Wt.	% Carbon	Ar	ntoine consta	nts	Vapour pressure	% Weight of vapour	% Vapour composition	% Carbon in vapour
i	М	Ci	А	В	С	Pi	Wi	Vi	CVi
Acetone	58.1	62	6.2548	1216.689	230.275	16.61	56.63	95.60	59.27
Styrene	104.2	92.3	6.3479	1629.2	230	0.40	2.43	4.10	3.78
Propylene glycol	76.1	47.3				0.01	0.05	0.08	0.04
Methyl methacrylate	100.1	60	5.3779	1945.56	-7.569	0.02	0.13	0.22	0.13

17.04

59.24

63.23

Total

Mean daily temperature of the surface of the liquid (Ta) $$11.4\ ^\circ C$$

Calculation of mass release from stacks

Vent	Conce	entration	Volume flow	Operating hours	Mass release
	mgC/m ³	mgsolvent/m ³	m ³ /h	h/annum	kg/annum
A1	11418	18059	n.a.	n.a.	47
A2	505	799	n.a.	n.a.	2
A3	67	106	3660	3936	1527
A5	64	101	2837	3936	1130
A6	37	59	2702	3936	622
A7	12	19	3895	3936	291
A8	31	49	12925	246	156
A9	3913	4239	n.a.	n.a.	9
A29	6	10	4178	246	10
A30	30	47	4816	1968	450
A31	798	1262	n.a.	214	15
A32	6	9	4178	246	10
A35	10	16	1030	8424	136
A36	103	163	580	292	28
Total					4432

While it is recognised that styrene is the predominant solvent present in the processes served by the powered release points, the consideration of all likely solvents present provides a very conservative estimate of process solvent releases. The effective carbon content of the combined release (63.2%) is lower than if the release was assumed to comprise entirely styrene which has a relatively high carbon content (92.3%).

Arkema provided information on the typical operating periods for each of the powered release points. The site closes for around 14 days per year over the Easter and Christmas periods. Generally the PMB operation runs for 7 days per week operating 16 hours per day. Processes in the Gelcoats building operated 8 hours per day over 5 days per week. The following operating assumptions were made.

Point	Operating time (h/year)	Comment
A1	110	LEV is operational for a maximum of 45 minutes per batch. In 2016 there were 146 batches. The total air displacement per batch is 18 m ³ .
A2	not applicable	The total air displacement per batch is 18 m ³ and there were 146 batches processed in 2016.
A3	3936	Operation is for 16 hours per day for 246 days per year.
A5	3936	Operation is for 16 hours per day for 246 days per year.
A6	3936	Operation is for 16 hours per day for 246 days per year.
A7	3936	Operation is for 16 hours per day for 246 days per year. Exhaust flow rate is based on LEV test results.
A8	246	Operation is for a maximum of 1 hour per day for 246 days per year. Exhaust flow rate is based on LEV test results.
A9	not applicable	The total air displacement is estimated at 2017 m ³ , based on 1771 tonnes of styrene purchased.
A29	246	Operation is for a maximum of 1 hour per day for 246 days per year.
A30	1968	Operation is for 8 hours per day for 246 days per year.
A31	214	Operation is for a maximum of 20 minutes per batch. In 2016 there were 641 batches. An air displacement of 18m ³ per batch is assumed.
A32	246	Operation is for a maximum of 1 hour per day for 246 days per year. This is used infrequently. A conservative estimate for the exhaust gas flow rate and emission concentration of 4178 m ³ /h and 6 mgC/m ³ as measured at A29 is assumed.
A35	8424	Operation is assumed to be continuous at all times the site is operational (i.e. 351 days per year).
A36	292	Operation is estimated at 2 hours per batch, with 146 batches in 2016. Exhaust flow rate is based on LEV test results.

Where it was not possible to undertake a volume flow measurements at the release point the results of the most recent LEV tests have been employed.

Appendix 4 Solvent releases from bulk storage vessels

The total mass emission from the fixed roof tanks is the sum of breathing losses and working losses. The breathing losses are caused by vapour being expelled from the tank either by thermal expansion or a change in atmospheric pressure. Filling losses occur during filling through the displacement of the air and vapour by the rising level of the liquid.

The breathing and filling losses from the storage vessels were calculated using methods described in the American Petroleum Institute (API) bulletin 2518 'Evaporation loss from fixed roof tanks'

A4.1 Filling losses

Filling losses are determined from:

$$FL = MP_{VA}\left(\frac{V}{8.3143T}\right)$$

where

filling losses (kg/year)
vapour pressure at the average temperature of the liquid surface (kPa)
volume of annual solvent throughput (m ³) - provided by Arkema
mean ambient temperature (K) – 11.4° C for Hull Park East January to December 2016

The temperature of the mass of liquid in a tank (T_{LM}) is given by:

$$T_{LM} = T + (3.33\alpha) - 0.55$$

where

lpha Solar absorbance of tank – assumed as 0.74 (VOC Workbook, A5.2.2)

The temperature of the surface of the liquid (T_{LS}) is given by:

$$T_{LS} = (0.44T) + (0.56T_{LM}) + (0.00503\alpha l)$$

where

I Solar radiation incidence (J/cm²day) – assumed as 911 for the Grimsby area (www. eosweb.larc.nasa.gov - VOC Workbook, A5.2.1.2)

The vapour pressure at the average surface temperature of the liquid is given by:

$$P_{VA} = 10^{\left[A - \frac{B}{(C + T_{LS})}\right]}$$

where

A, B, C Antoine constants for the material – taken from VOC Workbook, A5.1

Arkema Coatings Resins Limited Stallingborough A worst case assessment is considered where all of the materials are assumed to be styrene

A4.2 Breathing losses

Breathing losses are calculated from:

$$BL = 365 V_{vap} conc_{vap} K_E K_s$$

where

BL	breathing losses (kg/year)
V_{vap}	free space volume above liquid (m ³)
CONC _{vap}	vapour concentration (kg/m ³)
K _E	coefficient of expansion of the vapour
K _s	vapour saturation factor

The vapour concentration the tank is given by:

$$conc_{vap} = M \left(\frac{P_{VA}}{8.3143 T_{LS}} \right)$$

The vapour saturation factor is given by:

$$K_{S} = \frac{1}{1 + \left(0.1114 P_{VA} h_{V}\right)}$$

where

 h_v The height of free space in the tank (m) – it is assumed that the tank will be half full

The coefficient of expansion of the vapour is given by:

$$K_{E} = \frac{\Delta T_{V}}{T_{LS}} + \left[\frac{\left(\Delta P_{V} - \Delta P_{S}\right)}{P_{A} - P_{VA}}\right]$$

where

ΔT_V	daily temperature range of vapour (K)
ΔP_V	daily vapour pressure range (kPa)
$\Delta P_{\rm S}$	breather vent pressure range (kPa), assumed to be 0.4

The daily temperature range of the vapour is given by:

$$\Delta T_{V} = (0.72\Delta T_{A}) + (0.0155\alpha l)$$

where

ESG 🔗

ΔT_A daily ambient temperature range (K) - determined as 8.1°C for the Hull Park East station for the period January to December 2016

The daily vapour pressure range is given by:

$$\Delta P_{\rm V} = P_{\rm V max} - P_{\rm V min}$$

with

$$P_{V\max} = 10^{\left[A - \frac{B}{(C + T_{L\max})}\right]}$$
 and $P_{V\min} = 10^{\left[A - \frac{B}{(C + T_{L\min})}\right]}$

$$T_{Lmax} = T_{LS} + (0.25\Delta T_V)$$
 and $T_{Lmin} = T_{LS} - (0.25\Delta T_V)$

where

T _{Lmax}	maximum temperature of the surface of the liquid (°C)
T_{Lmin}	minimum temperature of the surface of the liquid (°C)

A4.3 Losses in 2016

For the period January to December 2017 the solvent releases arising from filling and breathing losses in the 13 bulk storage tanks are summarised in Table A4.1 and the detailed calculations for each tank follow.

	Fill volume	Area	Height	Solvent (kg/annum)		
Tank	(m³/annum)	(m)	(m)	Filling losses	Breathing losses	Total release
А	3865	10.46	10.01	89.6	21.7	111.3
В	2403	10.46	10.01	55.7	21.7	77.4
С	1623	10.46	10.01	37.6	21.7	59.3
D	0	10.46	10.01	0.0	0.0	0.0
E	563	10.46	10.01	13.1	21.7	34.7
F	319	10.46	10.01	7.4	21.7	29.1
К	401	10.18	7.86	9.3	16.6	25.9
L	0	10.18	7.86	0.0	0.0	0.0
М	668	10.18	7.86	15.5	16.6	32.1
Т	360	5.94	9.10	8.3	11.5	19.8
U	236	5.94	9.10	5.5	11.5	16.9
V	1089	5.94	9.10	25.3	11.5	36.7
RMT01	2017	7.07	4.0	46.8	6.0	52.7
Total				314.1	182.2	495.9

Table A4.1	Filling and breathing losses from bulk storage tanks (January to December 2016)
------------	---

Tank dimensions were provided by Arkema. The fill volume for resins is based on the delivery tonnage and a mean density of 1.13 t/m^3 . The density for styrene is assumed to be 0.878 t/m^3 at the mean ambient temperature (11.4° C).

Tank A Styrene

Average temperature range	
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank A	3865 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🔗	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T _{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (P _{VA})	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	3865 m ³
Filling losses (F_L)	89.63 kg/year

Total losses from tank (T_L) 111.32 kg Styrene /year

Tank B Styrene

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank B	2403 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🕫	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (P _{VA})	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	2403 m ³
Filling losses (F _L)	55.73 kg/year

Total losses from tank (T_L)

77.42 kg Styrene /year

Breathing losses

Tank area (A)	10.46 m ²
Tank depth (D)	10.012 m
Height of free space in tank -assuming half full (h_{ν})	1.825 m
Free space volume above liquid (V _{vap})	52.363 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _S)	0.9033
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T_{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_v)	0.268 kPa
Breather vent pressure range (ΔP_S)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion ($K_{\rm E}$)	0.055
Breathing losses (B_L)	21.69 kg/year

Breathing losses

Tank area (A)	10.46 m ²
Tank depth (D)	10.012 m
Height of free space in tank -assuming half full (h_{ν})	1.825 m
Free space volume above liquid (V _{vap})	52.363 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _S)	0.9033
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (TLMIN)	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_V)	0.268 kPa
Breather vent pressure range (ΔP_s)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion ($K_{\rm E}$)	0.055
Breathing losses (B_L)	21.69 kg/year

Breathing losses (B_L)

Tank C Styrene

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank C	1623 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🔗	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	1623 m ³
Filling losses (F_L)	37.64 kg/year

Total losses from tank (T_L) 59.33 kg Styrene /year

Tank E Styrene

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank E	563 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🖉	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	563 m ³
Filling losses (F _L)	13.06 kg/year

Total losses from tank (T_L)

34.75 kg Styrene /year

Breathing losses

Tank area (A)	10.46 m ²
Tank depth (D)	10.012 m
Height of free space in tank -assuming half full (h_{ν})	1.825 m
Free space volume above liquid (V _{vap})	52.363 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _S)	0.9033
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T _{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_V)	0.268 kPa
Breather vent pressure range (ΔP_S)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion (K_E)	0.055

Breathing losses (B_L)

21.69 kg/year

Breathing losses

Coefficient of vapour expansion (K_E)	0.055
Atmospheric pressure (P_{A})	101.3 kPa
Breather vent pressure range (ΔP_v)	0.208 kPa
Daily vapour pressure range (ΔP_V)	0.268 kPa
Minimum daily vapour pressure (P _{VMAX})	0.407 kPa
Minimum temperature of liquid surface (T _{LMIN}) Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C 11.79 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Daily ambient temperature range (ΔT_a)	8.1 °C
Vapour saturation factor (K _S)	0.9033
Vapour concentration (C _{vap})	0.023 kg/m ³
Free space volume above liquid (V _{vap})	52.363 m ³
Height of free space in tank -assuming half full (h_{ν})	1.825 m
Tank depth (D)	10.012 m
Tank area (A)	10.46 m ²

ESG 🔗

Tank F Styrene

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank F	319 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🔗	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	319 m ³
Filling losses (F_L)	7.40 kg/year

Total losses from tank (T_L)	29.09 kg Styrene /year
Tank K Styrene	
Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank K	401 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🕢	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (P _{VA})	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	401 m ³
Filling losses (F ₁)	9.30 kg/year

25.89 kg Styrene /year

Breathing losses

Tank area (A)	10.46 m ²
Tank depth (D)	10.012 m
Height of free space in tank -assuming half full (h_v)	1.825 m
Free space volume above liquid (V _{vap})	52.363 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _S)	0.9033
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T _{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_v)	0.268 kPa
Breather vent pressure range (ΔP_S)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion (K_E)	0.055
Breathing losses (B _L)	21.69 kg/year

Breathing losses

Tank area (A)	10.18 m ²
Tank depth (D)	7.86 m
Height of free space in tank -assuming half full (h_{ν})	1.800 m
Free space volume above liquid (V _{vap})	40.007 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _s)	0.9045
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T_{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_v)	0.268 kPa
Breather vent pressure range (ΔP_s)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion ($K_{\rm E}$)	0.055
Breathing losses (BL)	16.59 kg/year

Tank is conical in parts. Depth is based on a capacity of 80 $\rm m^3$ and base cross sectional area of 10.18 $\rm m^2.$

Total losses from tank (T_L)

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank M	668 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank ($ ho$	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	668 m ³
Filling losses (FL)	15.49 kg/year

Total losses from tank (T_L)	32.09 kg Styrene /year

Tank is conical in parts. Depth is based on a capacity of 80 \textrm{m}^3 and base cross sectional area of 10.18 $\textrm{m}^2.$

Tank T Styrene

Ambient mean temperature11.4 °CSolar absorbance of the tank0.74Solar radiation incidence911 J/cm² dayAnnual throughput of Styrene in Tank T360 m³Filling lossesMean ambient temperature (Ta)284.55 KSolar absorbance of tank (α)0.74Solar radiation incidence (I)911 J/cm² dayTemperature of the mass of the liquid (TLM)286.46 KTemperature of the surface of the liquid (TLS)289.01 KAntoine constant A6.3479Antoine constant B1629.2Antoine constant C230Vapour pressure at surface liquid temperature (PVA)0.527 kPaMolecular weight (M)104.2 g/molVolume of liquid pumped into tank (V)360 m³	Average temperature range	8.1 °C
Solar radiation incidence911 J/cm² dayAnnual throughput of Styrene in Tank T 360 m^3 Filling lossesMean ambient temperature (Ta) 284.55 K Solar radiation incidence (I) 911 J/cm² day Temperature of the mass of the liquid (TLM) 286.46 K Temperature of the surface of the liquid (TLS) 289.01 K Antoine constant A 6.3479 Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (PVA) 0.527 KPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m^3	Ambient mean temperature	11.4 °C
Annual throughput of Styrene in Tank T 360 m^3 Filling losses 284.55 K Solar absorbance of tank (α) 0.74 Solar absorbance of tank (α) 0.74 Solar radiation incidence (I) 911 J/cm ² day Temperature of the surface of the liquid (T_{LM}) 286.46 K Temperature of the surface of the liquid (T_{LS}) 289.01 K Antoine constant A 6.3479 Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (P_{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Solar absorbance of the tank	0.74
Filling losses Mean ambient temperature (T_a) 284.55 K Solar absorbance of tank (α) 0.74 Solar radiation incidence (I) 911 J/cm ² day Temperature of the mass of the liquid (T_{LM}) 286.46 K Temperature of the surface of the liquid (T_{LS}) 289.01 K Antoine constant A 6.3479 Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (P_{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Solar radiation incidence	911 J/cm ² day
	Annual throughput of Styrene in Tank T	360 m ³
Solar absorbance of tank (∂ 0.74Solar radiation incidence (I)911 J/cm² dayTemperature of the mass of the liquid (T _{LM})286.46 KTemperature of the surface of the liquid (T _{LS})289.01 KAntoine constant A6.3479Antoine constant B1629.2Antoine constant C230Vapour pressure at surface liquid temperature (P _{VA})0.527 kPaMolecular weight (M)104.2 g/molVolume of liquid pumped into tank (V)360 m³	Filling losses	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Mean ambient temperature (T _a)	284.55 K
Temperature of the mass of the liquid (T_{LM}) 286.46 K Temperature of the surface of the liquid (T_{LS}) 289.01 K Antoine constant A 6.3479 Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (P_{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Solar absorbance of tank (0)	0.74
Temperature of the surface of the liquid (T _{LS}) 289.01 K Antoine constant A 6.3479 Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (P _{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Solar radiation incidence (I)	911 J/cm ² day
Antoine constant A 6.3479 Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (P _{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Temperature of the mass of the liquid (T_{LM})	286.46 K
Antoine constant B 1629.2 Antoine constant C 230 Vapour pressure at surface liquid temperature (P _{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant C 230 Vapour pressure at surface liquid temperature (P _{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Antoine constant A	6.3479
Vapour pressure at surface liquid temperature (P _{VA}) 0.527 kPa Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Antoine constant B	1629.2
Molecular weight (M) 104.2 g/mol Volume of liquid pumped into tank (V) 360 m ³	Antoine constant C	230
Volume of liquid pumped into tank (V) 360 m ³	Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
	Molecular weight (M)	104.2 g/mol
	Volume of liquid pumped into tank (V)	360 m ³
Filling losses (FL) 8.35 kg/year	Filling losses (FL)	8.35 kg/year

Total losses from tank (T_L)

19.82 kg Styrene /year

Breathing losses

Tank area (A)	10.18 m ²
Tank depth (D)	7.86 m
Height of free space in tank -assuming half full (h_{ν})	1.800 m
Free space volume above liquid (V _{vap})	40.007 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _s)	0.9045
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T _{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (Pvmin)	0.407 kPa
Daily vapour pressure range (ΔP_V)	0.268 kPa
Breather vent pressure range (ΔP_S)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion ($K_{\rm E}$)	0.055
Breathing losses (B_L)	16.59 kg/year

Breathing losses

Tank area (A)	5.94 m ²
Tank depth (D)	9.1 m
Height of free space in tank -assuming half full (h_v)	1.375 m
Free space volume above liquid (V _{vap})	27.027 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _S)	0.9254
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T _{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_v)	0.268 kPa
Breather vent pressure range (ΔP_s)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion (K_E)	0.055
Breathing losses (BL)	11.47 kg/year

Tank U Styrene

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank U	236 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (0)	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	236 m ³
Filling losses (FL)	5.47 kg/year

Total losses from tank (T_L) 16.94 kg Styrene /year

Tank V Styrene

Average temperature range	8.1 °C
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank V	1089 m ³
Filling losses	
Mean ambient temperature (T _a)	284.55 K
Solar absorbance of tank (🔗	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T_{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (P _{VA})	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	1089 m ³
Filling losses (F_L)	25.26 kg/year

Total losses from tank (T_L)

36.72 kg Styrene /year

Breathing losses

Tank area (A)	5.94 m ²
Tank depth (D)	9.1 m
Height of free space in tank -assuming half full (h_{ν})	1.375 m
Free space volume above liquid (V _{vap})	27.027 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _s)	0.9254
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_v)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T _{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_v)	0.268 kPa
Breather vent pressure range (ΔP_s)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion ($K_{\rm E}$)	0.055
Breathing losses (BL)	11.47 kg/year

Breathing losses

Tank area (A)	5.94 m ²
Tank depth (D)	9.1 m
Height of free space in tank -assuming half full (h_{ν})	1.375 m
Free space volume above liquid (V _{vap})	27.027 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _s)	0.9254
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_V)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (T_{LMIN})	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP _v)	0.268 kPa
Breather vent pressure range (ΔP_s)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion ($K_{\rm E}$)	0.055
Breathing losses (BL)	11.47 kg/year

Tank RMT01 Styrene

Average temperature range	<mark>8.1</mark> ℃
Ambient mean temperature	11.4 °C
Solar absorbance of the tank	0.74
Solar radiation incidence	911 J/cm ² day
Annual throughput of Styrene in Tank RMT01	2017 m ³
Filling losses	
Mean ambient temperature (T_a)	284.55 K
Solar absorbance of tank () $lpha$	0.74
Solar radiation incidence (I)	911 J/cm ² day
Temperature of the mass of the liquid (T _{LM})	286.46 K
Temperature of the surface of the liquid (T_{LS})	289.01 K
Antoine constant A	6.3479
Antoine constant B	1629.2
Antoine constant C	230
Vapour pressure at surface liquid temperature (PvA)	0.527 kPa
Molecular weight (M)	104.2 g/mol
Volume of liquid pumped into tank (V)	2017 m ³
Filling losses (F_L)	46.78 kg/year

Total losses from tank (T_L)

52.74 kg Styrene /year

Breathing losses

Tank area (A)	7.07 m ²
Tank depth (D)	4 m
Height of free space in tank -assuming half full (h_v)	1.500 m
Free space volume above liquid (V _{vap})	14.140 m ³
Vapour concentration (C _{vap})	0.023 kg/m ³
Vapour saturation factor (K _S)	0.9191
Daily ambient temperature range (ΔT_a)	8.1 °C
Daily temperature range of vapour (ΔT_V)	16.28 °C
Maximum temperature of liquid surface (T _{LMAX})	19.93 °C
Minimum temperature of liquid surface (TLMIN)	11.79 °C
Maximum daily vapour pressure (P _{VMAX})	0.675 kPa
Minimum daily vapour pressure (P _{VMIN})	0.407 kPa
Daily vapour pressure range (ΔP_V)	0.268 kPa
Breather vent pressure range (ΔP_S)	0.4 kPa
Atmospheric pressure (P _A)	101.3 kPa
Coefficient of vapour expansion (K_E)	0.055
Breathing losses (BL)	5.96 kg/year

Appendix 5 Fugitive releases from natural ventilation

The fugitive solvent emission from the PMB and Gelcoat buildings was estimated by multiplying the background solvent concentration for the production area with the fugitive volume flow rate of air exiting the building and the number of hours of fugitive release per annum:

 $F = C_{\rm s}Qh10^{-6}$

where

F	Fugitive mass solvent_release (kg/annum)
C _S	Ambient concentration of solvent in building ambient atmosphere – from sampling on the
	22 and 23 August 2017 by ESG (mgstyrene/m³)
Q	Volume flow of air to outside through open doors, windows and building leakage, based on
	the difference between measurements of net air flow into building and air extraction
	through LEVs as determined by ESG on the 22 and 23 August 2017 (m 3 /h)
h	Duration that access doors are open (h/annum)

ESG undertook measurements of the air flow into each building through open doors. This represents the maximum air flow into the building in the case where all doors are open. The corresponding fugitive release, with air exiting the building via open doors windows and general building leakage, is the difference between the air flow in and the air extracted through the building LEVs (Appendix 3). Under normal circumstances access doors remain closed when not in use in order to minimise fugitive losses. The measured situation is therefore a worst case. With all doors closed it might be expected that fugitive emissions would be minimal with the building being under slightly negative pressure due to the suction of the LEVs which provide an approximate ventilation rate of around 3 air changes per hour in each building.

The conceptual model for fugitive release assumes that with the building access doors closed there is no fugitive release and all releases of VOCs are captured by the LEVs and released to atmosphere via the corresponding external vents. It is recognised that access to each building will be required and that certain access doors will need to be open for periods. It is assumed that all doors to each building will be open for a cumulative period of one hour per 8 hour shift for each operational day. With the doors open the fugitive air flow from the building will be the difference between the net air in through open doors and the air extracted by LEVs. The fugitive VOC emission rate will therefore be determined from the measured mean ambient VOC concentration and the fugitive air flow and the number of hours that doors are open.

For the period January to December 2016 the fugitive solvent releases from the PMB and Gelcoat building were determined as below:

Building		Gelcoat	PMB
Days of operation	days/annum	246	351
Hours with doors open	h/day	1	2
Hours with doors open	h/annum	246	702
Mean solvent concentration	mgstyrene/m ³	929	121
Volume of air entering building	m ³ /s	28.40	28.34
	m ³ /h	102240	102024
Volume of air removed by LEVs	m³/h (at 20°C)	23997	5656
Volume of fugitive air release	m³/h (at 20°C)	78243	96368
Annual fugitive release of solvent	kg styrene/annum	17881	8186

Annual operating hours for the Gelcoat building is based on an 8 hour working day for 5 days per week with 14 day plant shutdown. The PMB is assumed to operate for 16 hours/ day, 7 days and week with a 14 day plant shutdown.

Styrene is assumed to be the predominant solvent present in the ambient atmosphere.

The ambient temperature is assumed to be 20°C.

LEV extraction for the Gelcoats building is the sum of the measured volume flow rates at points A5, A6, A7 and A8. For the PMB the LEV extraction rate is based on measured volume flow rates at A3, A35 and A36 (see Appendix 3 – volumes expressed at STP).

Details of the measurements made are presented below. Measurements of VOC concentration were made around each building and air flow rate measurements were made at all access doors.

	Volumetric Flow Concentration (ppm styrene) Concentration Release Rate	(m3/s) (mg/m ³)	In or Out a Ave (mg/s)	2.81 0 0 0 0 0	3.32 0 0 0 0 0			- 0.00 208 192 229 210 975 0	0.00 211 232 133 192 891	229 234 241 235 1091	30.988	lding 2.586 m ³ /s Total 2820	d Flow 28.40 m ³ /s into the building																
			3 AVE IN OI	1.8	2.0	1.3	1.4	0	0	1.3 1.6 O	Flow into the building	Flow out of the building	Combined Flow							South	ſ	1 2	-		5		Ground Floor		South
				-	-		_	-		_						6		orth											
	(m/s)		7	2	2.2	1.2	2.9	0						_			ing	of -Sc			-						-		
	Flow Rates (m/s)				_	-	-	0								ime Description	00 Main building												
	Flow Rates (m/s)	•	7	1.6	2.1		۲. ۲.	0	0	1.5						 Volume	6000	1 500 Pitched roof -N Ditched roof -St	7000		centration	n styrene)	243.9	243.1	239.4	240.3	238.6 237	78.4	178.7
		Area (m²)	7	1.5323 1.6	1.632 2.1	1.616 1	7.8 I.5 1624 1.1	1.64 0	18.3168 0							Height Volume	6 6000	200	Total volume 7000		Time Concentration		11:00 243.9 11:05 269.4				11:25 238.6 11:30 237		11:40 178.7
Gelcoat Building	Door Sizes (m) Flow Rates (m/s)	•	7	1.99 1.5323 1.6	2.04 1.632 2.1	2.02 1.616 1	6.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	1.64 0	4.77 18.3168 0	2.02 1.616 1.5					Building Volume	 Volume	40 6 600	1 500	Total volume 7000	Building Concentrations				11:10	11:15	11:20		11:35	

Ambient measurements within the Gelcoat building

Monthlemetric files (m) Mont Sizes (m) Flow Rates (m/s) Flow Rates (m/s) Contrent of condition (gam syntemetric) Contrent of condition (gam syntemetric) 1 2 2 2 3 2 3 000 000 00 000 00	Concentration (ppm styrene) Concentration (mg/m) 1 2 3 Are (mg/m) 6.2 7.8 8.1 7.4 34.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.6 18.4 24.1 22.0 102.4 48.1 53.4 38.9 46.8 217.5 m^3/s 13.3 38.9 46.8 217.5 m^3/s 13.4 24.1 22.0 102.4 m^3/s 38.9 46.8 217.5 102.4 m^3/s 1 38.9 46.8 217.5 m^3/s 1 38.9 46.8 217.5 m^3/s m^3/s m^3/s m^3/s m^3/s	Release Rate (mg/s) 0 148.3 0 0 0 148.3	(Kg/haur) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Height Area (m) Area (m) (m3/s) 254 7.493 0.0 0.6 0.1 0.2 1 1.55 247 4.5001 0.2 1.7 1.1 1.0 1 3.315 239 1.5523 2.6 1.3 0.7 1.5 1 4.54 318 9.5682 0.0 0.6 0.1 0.7 1.5 1 4.54 139 1.5523 0.0 0.0 0.0 0.0 0.0 0.0 1.45 238 7.2414 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.45 157 1.576 0.0 0.0 0.0 0.0 0.0 0.0 1.45 157 1.576 0.0 0.0 0.0 0.0 1.45 158 7.2414 0.0 0.0 0.0 0.0 1.45 157 1.576 0.01 0.0 0.0 0.0 0.	Ave 10 000 000 000 000 000 000 000 000 000	(ng/s) 0 148.3 0 0 0 0 0	(kg/hour) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
254 7,493 0.0 0.6 0.1 0.2 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.55 1 1.35 <t< th=""><th>2 24:1 7.4 000 000 000 000 000 000 000 000 000 0</th><th>148.3 148.3 0 0 0 0 0 148.3 0 0 0 0 0 148.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	2 24:1 7.4 000 000 000 000 000 000 000 000 000 0	148.3 148.3 0 0 0 0 0 148.3 0 0 0 0 0 148.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8.1 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.03 8.5749 2.6 1.3 0.7 1.5 in 13.15 3.19 1.5522 0.0 0.0 0.0 0.0 0.0 4.97 3.19 1.5522 0.0 0.0 0.6 0.2 0.01 1.45 2.98 7.2414 0.0 0.0 0.0 0.0 0.0 1.45 1.97 1.576 0.0 0.0 0.0 0.0 0.0 1.45 1.97 1.576 0.0 0.0 0.0 0.0 0.0 1.45 1.97 1.576 1.576 0.0 1.45 1.97 1.576 1.576 1.45 1.576 1.97 0.00 1.97	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		000%00 <mark>%</mark>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0 0.0 0.0 0.0 2.4.1 2.2.0 2.4.1 2.2.0 3.8.9 46.8 704a1		0 0 % 0 0 <mark>%</mark>
3.18 9.5082 0.0 0.0 0.0 0.0 0.0 0.0 5.39 2.38 7.2414 0.0 0.0 0.0 0.0 0.0 0.1 145 2.98 7.2414 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.97 1.576 0.1 1.6 0.0	43.5 54.2 24.1 22.0 38.9 46.8 Tota	<mark>_</mark>	0 % 0 0 <mark>%</mark>
238 7.2414 0.0 0.0 0.0 0.0 0.1 145 1197 1.576 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1197 1.576 0.0	24.1 22.0 38.9 46.8 70tal	<mark>_</mark>	8000 8000 1000 1000 1000 1000 1000 1000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	38.9 46.8 704a		o o
Image: Solution interference Flow out of the building 23.79 Image: Solution interference Flow out of the building 23.34 Image: Solution interference Flow out of the building 145 Image: Solution interference Flow out of the building 28.34 Image: Solution interference Flow out of the building 28.34 Image: Solution interference Solution 28.34 Image: Solution interference Image: Solution interference Solution Image: Solution interference Image: Solution interference Solution Image: Solution interference Image: Solution interference Solution Image: Solution interference Solution Solution		0 148.3	o <mark>8</mark>
Image: Single state Image: Single state Solution		148.3	ν.
Image: Network of the building 145 Image: Network of the building 28:34 Image: Network of the building 11:25		148.3	5 <mark>0</mark>
Length Height Combined Flow 28.34 Length Height Volume 24 15.8 8 1989 Lower end 16.8 0.5 124 Lower end 16.8 0.5 124 Lower end 17.9 1070 South fast Comer 8.6 11.25 1431 1070 South fast Comer 1071 4635	to the building		
Length Height Volume 16.8 8 1989 Lower end pitche 16.8 0.5 1249 Lower end pitche 16.8 0.5 1249 Lower end pitche 8.7 1070 South East Come 8.6 11.25 1451 North East Come 7.01 7041 volume 4635 North East Come			
Length Height Volume 16.8 8 1989 Lower end 16.8 8 1349 Lower end 16.8 0.5 124 Lower end 16.8 11.25 1470 South East Come 8.6 11.125 1451 North East Come 7.011 volume 4635 1451 North East Come			
Length Height Volume 16.8 9.8 1989 Lower end 16.8 0.5 124 Lower end 16.8 0.5 124 Lower end 16.8 0.5 134 Lower end 16.8 0.5 1451 North East Come 8.6 11.25 1451 North East Come 7 Total volume 4635 North East Come			
16.8 8 1989 Lower end 16.8 0.5 124 Lower end pitche 16.8 0.5 124 Lower end pitche 8.2 8.7 1070 South East Correct 8.6 11.25 1451 North East Correct 7 Total volume 4635 1451 North East Correct			
16.8 0.5 124 Lower end pitche 8.2 8.7 1070 South East Come 8.6 11.25 1451 North East Come 70al volume 4635 1451 North East Come			
8.2 8.7 1070 South fast Come 8.6 11.25 1451 North fast Come Total volume 4635			
8.6 11.25 1451 North East Come Total volume 4635			
lotal Volume 4655			
		-	
Position Date Time Concentration		A State of the sta	The second
mqq)	0		THE THE
23/08/2017 12:10 2.5			
12:12			
23/08/2017			
23/08/2017 12:18			
		(r.s.	
23/08/2017 12:22		-	
12:24 33.3		2	
		1	
Average 26.1	and the second of the		A CONTRACT OF
20 20 20		ANY ANY	
3 00		THE NEW YORK	あるというない
14 Floor			

Appendix 6 Releases from empty containers sent for recycling

Arkema return empty drums and IBCs for recycling following use. It is assumed that there will be some residual solvent in each container which will represent a solvent loss from the process.

Arkema retain full records of the number of drums (205 l) and IBCs (1000l) containing solvent containing resins which are purchased annually (see Appendix 2). It is assumed that these containers are emptied and then sent off-site for recycling. In both cases it is assumed that there is a residual material content within the container equivalent to 1% of the original capacity with a solvent content equivalent to the mean content of the original material.

For other solvent containing raw materials Arkema retain an inventory of purchases (see Appendix 2) differentiating between material delivered in drums or kegs and those in IBCs. The number of drums and IBCs used is determined based on with assumed capacities of 100 kg and 1000 I respectively and the total amount of each material delivered. In both cases it is assumed that there is a residual material content within the container equivalent to 1% of the original capacity with a mean solvent content of equivalent to the mean for material delivered in each container.

The total residual solvent present in the containers sent off-site is assumed to be a loss from the process. For the period January to December 2016 solvent losses due to residual solvent present in containers removed from site for recycling were determined as below:

Calculation of emissions from containers

Solvent containing material purchased in drums

Weight of solvent containing material purchased in drums	120649 kg
Weight of solvent contained in drums	34626 kg
Number of drums (assume a capacity of 100 kg)	1206
Residual solvent in each drum (1 kg material)	0.29 kg
Estimated solvent release from drums	346 kg

Solvent containing material purchased in IBCs

Weight of solvent containing material purchased in IBCs	371524 kg
Weight of solvent contained in IBCs	330812.7 kg
Number of IBCs (assume a capacity of 1000 kg)	372
Residual solvent in each drum (assume 10 kg material)	8.90 kg
Estimated solvent release from IBCs	3308 kg

Solvent containing resin purchased in drums

Weight of solvent containing resin purchased in drums	679 kg
Weight of solvent contained in drums	210 kg
Number of drums (assume a capacity of 205 l)	343
Residual solvent in each drum (2 kg material)	0.62 kg
Estimated solvent release from drums	213 kg
Solvent containing resin purchased in IBCs	
Weight of solvent containing resin purchased in IBCs	1479 kg
Weight of solvent contained in IBCs	458.49 kg
Number of IBCs (assume a capacity of 1000 kg)	1346
Residual solvent in each drum (assume 10 kg material)	3.10 kg
Estimated solvent release from IBCs	4173 kg
Total solvent losses in containers	8040 kg

END OF REPORT

Contact:

Dr Nick Ford Environmental Scientifics Group Ltd Unit D Bankside Trade Park Cirencester Gloucestershire GL7 1YT

T: 07768 257628 E: nick.ford@esg.co.uk

