

Element Materials Technology, Unit 4A Adwick Park, Manvers, Rotherham, S63 5AB
Your Element Contact: Derek Myers (07870 177 819)
E: derek.myers@element.com

Stack Emissions Testing Report Commissioned by

Dunlop Oil & Marine Ltd

Installation Name & Address

Dunlop Oil & Marine Ltd Moody Lane Pyewipe Grimsby DN31 2SY

PPC Permit: EP/200200004/V1

Stack Reference

Donaldson Extract Unit

Dates of the Monitoring Campaign

9th October 2019

Job Reference Number

ERO-2406

Report Written by

Gary Thackray Technical Manager MCERTS Level 2 MM 02 078 TE1 TE2 TE3 TE4

Report Approved by

Scott Pilkington Deputy Regional Manager MCERTS Level 2 MM 04 501 TE1 TE2 TE3 TE4

Report Date

30th October 2019

Version

Version 1

Signature of Report Approver

CONTENTS

TITLE PAGE

CONTENTS

EXECUTIVE SUMMARY

Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Summary of Sampling Deviations	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Element's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Element.

Executive Summary (Page 1 of 7)

MONITORING OBJECTIVES

Dunlop Oil & Marine Ltd, Grimsby

Donaldson Extract Unit

9th October 2019

Overall Aim of the Monitoring Campaign

Element were commissioned by Dunlop Oil & Marine Ltd to carry out stack emissions testing on the Donaldson Extract Unit at Grimsby.

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values (ELVs) as specified in the Site's Permit.

Special Requirements

There were no special requirements.

Target Parameters

Total Particulate Matter

MONITORING RESULTS

Dunlop Oil & Marine Ltd, Grimsby
Donaldson Extract Unit
9th October 2019

where MU = Measurement Uncertainty associated with the Result

	Concentration				Mass Emission			
Parameter	Units	Result	MU	Limit	Units	Result	MU	Limit
			+/-				+/-	
Total Particulate Matter	mg/m³	0.80	0.79	50	g/hr	13.7	13.9	-
Water Vapour	% v/v	0.91	0.05					
Stack Gas Temperature	°C	23.2						
Stack Gas Velocity	m/s	10.9	2.3					
Volumetric Flow Rate (ACTUAL)	m³/hr	18855	4136					
Volumetric Flow Rate (REF)	m³/hr	17182	3769					

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM AN AVERAGE OF ALL OF THE ISOKINETIC RUNS.

¹ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

(Page 3 of 7)

MONITORING DATE(S) & TIMES

Dunlop Oil & Marine Ltd, Grimsby Donaldson Extract Unit 9th October 2019

Parameter	U	Jnits	Concentration	Units	Mass Emission	Sampling Date(s)	Sampling Times	Duration mins
Total Particulate Matter	R1 mg	ng/m³	0.80	g/hr	13.7	09/10/2019	13:40 - 14:40	60
Velocity Traverse	R1					09/10/2019	13:40 - 13:45	

All results are expressed at the respective reference conditions.

Dunlop Oil Marine Ltd Grimsby Donaldson Extract Unit

PROCESS DETAILS

Dunlop Oil & Marine Ltd, Grimsby

Donaldson Extract Unit

9th October 2019

Standard Operating Conditions

Parameter	Value
Process Status	Normal Operation
Capacity (of 100%) and Tonnes / Hour	100 % Capacity
Continuous or Batch Process	Continuous
Feedstock (if applicable)	N/A
Abatement System	Bag Filter
Abatement System Running Status	On
Fuel	N/A
Plume Appearance	No Plume Visible

Executive Summary (Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Dunlop Oil & Marine Ltd, Grimsby

Donaldson Extract Unit

9th October 2019

	Monitoring Analysis									
Parameter	Standard	Technical Procedure	ISO 17025 Testing	Testing Lab	Analytical Procedure	Analytical Technique	ISO 17025 Analysis	Lab	MCERTS Testing	LOD (Average)
Total Particulate Matter	EN 13284-1	CAT-TP-01	Yes	EET	CAT-TP-03	Gravimetric	Yes	EET	Yes	0.18 mg/m ³
Water Vapour	EN 14790	CAT-TP-05	Yes	EET	CAT-TP-05	Gravimetric	Yes	EET	Yes	0.1 % v/v
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	Yes	EET	Pitot '	Pitot Tube and Thermocouple			Yes	1.8 m/s

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

Liement Stockport (LLT) 130 17023 Accreditation Number: 4279		Element Stockport (EET)	ISO 17025 Accreditation Number: 4279
--	--	-------------------------	--------------------------------------

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
Total Particulate Matter	All Runs	End of pipe sampling was necessary as there were no sampling ports installed on the stack.

Executive Summary

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Parameter	Units	Value	
Туре	-	Rectangular	
Depth	m	0.80	
Width	m	0.60	
Area	m²	0.48	
Port Depth	cm	0	
Orientation of Duct	-	Vertical	
Number of Ports	-	Grid	
Sample Port Size	-	Hole	

Location of Sampling Platform

General Platform Information	Value		
Permanent / Temporary Platform	MEWP		
Inside / Outside	Outside		

Platform Details

EA Technical Guidance Note M1 / EN 15259 Platform Requirements				
Sufficient working area to manipulate probe and operate the measuring instruments	Yes			
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	N/A			
Platform has vertical base boards (approx. 0.25m high)	N/A			
Platform has chains / self closing gates at top of ladders	N/A			
There are no obstructions present which hamper insertion of sampling equipment	Yes			
Safe Access Available	Yes			
Easy Access Available	Yes			

Sampling Location / Platform Improvement Recommendations

All platforms should be designed in accordance with the requirements in the Environment Agency's Technical Guidance Note M1 and EN 15259.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1
Lowest Differential Pressure	Pa	98.1
Mean Velocity	m/s	10.8
Lowest Gas Velocity	m/s	10.8
Highest Gas Velocity	m/s	10.8
Ratio of Above	: 1	1.0
Maximum Angle of Swirl	0	5.0
No Local Negative Flow	-	Yes

Executive Summary

(Page 7 of 7)

PLANT PHOTOS

Photo 1 Photo 2

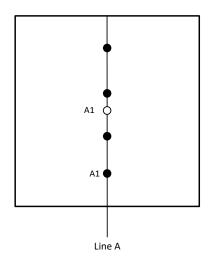

Photo 3

Photo 4

SAMPLE POINTS

where

- O = isokinetic point sampled at
- = isokinetic point <u>not</u> sampled at
- = combustion gases sample point
- = non-isokinetic sample point

APPENDICES

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK EMISSIONS MONITORING PERSONNEL

Position	Name	MCERTS Accreditation	MCERTS Number	Technical Endorsements
Team Leader	Gary Thackray	MCERTS Level 2	MM 02 078	TE1 TE2 TE3 TE4
Technician	Greg Clough	MCERTS Level 1	MM 18 1505	None

LIST OF EQUIPMENT

Extractive Sampling				
Equipment Type	Equipment I.D.			
Control Box DGM (1)	CAT 7.59			
Control Box DGM (2)	-			
Box Thermocouples (1)	CAT 3.157			
Box Thermocouples (2)	-			
Umbilical (1)	CAT 3.157			
Umbilical (2)	-			
Oven Box (1)	CAT 12.56			
Oven Box (2)	-			
Heated Probe (1)	CAT 5.132			
Heated Probe (2)	-			
Heated Probe (3)	-			
S-Pitot (1)	CAT 21p.159			
S-Pitot (2)	CAT 21s.58			
L-Pitot	-			
Site Balance	CAT 17.35			
500g / 1Kg Check Weights	CAT 17.35			
Last Impinger Arm	CAT 4.888			
Callipers	CAT 23.34			
Tubes Kit Thermocouple	-			

Instrumental Analysers				
Equipment Type	Equipment I.D.			
Horiba PG-250	-			
Horiba PG-250 SRM	-			
Servomex 5200 MP	-			
Eco Physics CLD 822Mh	-			
ABB AO2020-URAS26	-			
Testo 350 XL	-			
JCT JCC P1 Cooler	-			
Gasmet DX4000	-			
Gasmet Sampling System	-			
Bernath 3006 FID	-			
M&C PSS	-			
Mass Flow Controller (1)	-			
Mass Flow Controller (2)	-			
Mass View (1)	-			
Mass View (2)	-			
Hioki 5031 (mA)	-			
Hioki 5043 (V)	-			
Bioaerosols Temperature Logger	-			
Electronic Refrigerator	-			

Miscellaneous Items					
Equipment Type	Equipment I.D.				
Digital Manometer (1)	CAT 3.154				
Digital Manometer (2)	CAT 3.156				
Digital Temperature Meter	CAT 3.154				
Stopwatch	CAT 14.53				
Barometer	CAT 13.42				
Stack Thermocouple (1)	-				
Stack Thermocouple (2)	-				
Stack Thermocouple (3)	CAT 4.875				
1m Heated Line (1)	-				
1m Heated Line (2)	-				
1m Heated Line (3)	-				
5m Heated Line (1)	-				
15m Heated Line (1)	-				
20m Heated Line (1)	-				
20m Heated Line (2)	-				
Dual Channel Heater Controller	-				
Single Channel Heater Controller	-				
Laboratory Balance	CAT 1.18, 1.18a, 1.18b				
Tape Measure	CAT 16.01				

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure
Total Particulate Matter	EN 13284-1	CAT-TP-01
Water Vapour	EN 14790	CAT-TP-05
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	0.80
Stack Width, W	m	0.60
Stack Area, A	m²	0.48
Average Stack Gas Temperature, T _a	°C	23.0
Average Stack Gas Pressure	mmH₂O	10.0
Average Stack Static Pressure, P _{static}	kPa	0.080
Average Barometric Pressure, P _b	kPa	100.1
Average Pitot Tube Calibration Coefficient, C _p	-	0.84

Stack Gas Composition & Molecular Weights

Component		Conc	Conc	Conc	Volume	Molar	Density	Conc
		ppm	Dry	Wet	Fraction	Mass	kg/m³	kg/m³
			% v/v	% v/v	r	М	р	p _i
CO ₂	(Estimated)	-	0.06	0.06	0.0006	44.01	1.9635	0.00118
O ₂	(Estimated)	-	20.80	20.61	0.2080	32.00	1.4277	0.29696
N ₂		-	79.14	78.42	0.7914	28.01	1.2498	0.98913
Moisture (H₂O)		-	-	0.91	0.0091	18.02	0.8037	0.00735

Where: p = M / 22.41

 $p_i = r x p$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P _{STD}	kg/m³	1.287
Wet Density (STP), P STW	kg/m³	1.283
Dry Density (Actual), P Actual	kg/m³	1.174
Average Wet Density (Actual), P ActualW	kg/m³	1.170

Where:

 $P_{\rm STD}$ = sum of component concentrations, kg/m³ (not including water vapour)

 $P_{\rm STW}$ = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour)

 $P_{Actual} = P_{STD} \times (T_{STP} / (P_{STP})) \times ((P_{static} + P_b) / T_a)$

 $P_{ActualW}$ (at each sampling point) = P_{STW} x (T_s / P_s) x (P_a / T_a)

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Actual	REF ¹
Temperature	°C	23.0	0.0
Total Pressure	kPa	100.2	101.3
Moisture	%	0.91	0.91

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	18688
Gas Volumetric Flowrate (STP, Wet)	m³/hr	17046
Gas Volumetric Flowrate (STP, Dry)	m³/hr	16890
Gas Volumetric Flowrate REF ¹	m³/hr	17046

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value	
Date of Survey		-	09/10/2019	
Time of Survey		-	13:40 - 13:45	
Atmospheric Pres	sure	kPa	100.1	
Average Stack Sta	tic Pressure	Pa	80	
Result of Pitot Sta	gnation Test	-	Pass	
Are Water Drople	ts Present?	-	No	
Device Used	S-Type Pitot	S-Type Pitot with Liquid Incline Manometer		

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Vertical
Pitot Tube, C _p	-	0.84
Number of Lines Available	-	1
Number of Lines Used	-	1

			:	Sampling Line A	1	
Traverse	Depth	ΔР	Temp	Wet Density	Velocity	Swirl
Point	m	mmH₂O	°C	kg/m³	m/s	•
STATIC (Un	its: Pa)	80.0				
Mean		10.0	23.0	1.170	10.81	
1	0.40	10.0	23.0	1.170	10.81	5.0

Job Number: ERO-2406, Version 1 Sample Date/s: 9th October 2019 PPC Permit: EP/200200004/V1

EET-RT (Version CC) Page 13 of 20

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>∆pi</u>)	2.186	Pa
- Resolution	u(res)	0.52154	
- Calibration	u(cal)	1.001	
- Drift	u(drift)	1.096	
- Lack of Fit	u(fit)	1.159	
- Overall corrections to dynamic measurements	u(Cf)	3.778	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00003	-
- φO ₂ ,w	-	20.610	
- φCO ₂ , w	-	0.059	
- Oxygen, dry	u(φO₂,d)	0.637	
- Carbon Dioxide, dry	u(φCO₂,d)	0.002	
- Water Vapour	u(φH₂O)	0.047	
- Oxygen, wet	u(φO₂,w)	0.631	
- Carbon Dioxide, wet	u(φCO₂,w)	0.002	
Standard uncertainty associated with the stack temperature	u(Tc)	1.510	К
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.706	Pa
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	2.186	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00631	-
Standard uncertainty associated with the local velocities	u(vi)	1.184	Pa
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	1.184	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	2.321	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	21.46	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	4099.6	m³/hr
- u²(α)/α²	-	0.00053	
- u²(qV,w)/q²V,w	-	0.01253	
- u²(qV,w)	-	4374965	
- u(qV,w)	-	2091.6	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	21.94	%

TOTAL PARTICULATE MATTER: RESULTS SUMMARY

Dunlop Oil & Marine Ltd, Grimsby

Donaldson Extract Unit

Sample Runs

Parameter	Units	Run 1
Concentration	mg/m³	0.80
Uncertainty	±mg/m³	0.79
Mass Emission	g/hr	13.7
Uncertainty	±g/hr	13.9

Parameter	Units	Run 1
Water Vapour	% v/v	0.91
Uncertainty	±% v/v	0.05

Blank Runs

General Sampling Information

Parameter	Value	
Standard	EN 13284-1	
Technical Procedure	CAT-TP-01	
Probe Material	Titanium	
Filter Housing Material	Titanium	
Positioning of Filter	In Stack	
Filter Size and Material	47mm Glass Fibre	
Number of Sampling Lines Used	1/1	FOR
Number of Sampling Points Used	1/1	FOR
Sample Point I.D.'s	A1	

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, without correction for water vapour content.

TOTAL PARTICULATE MATTER: ISOKINETIC SAMPLING CALCULATIONS

Tool	Haita	Dum 1	
Test	Units	Run 1	
Absolute pressure of stack gas, P _s			
Barometric pressure, P _b	mmHg	750.8	
Stack static pressure, P _{static}	mmH₂O	8.2	
$P_s = (P_b + (P_{static} / 13.6))$	mmHg	751.4	
Volume of water vapour collected, V _{wstd}			
Total mass collected in impingers (liquid trap)	g	3.0	
Total mass collected in impingers (silica trap)	g	4.1	
Total mass of liquid collected, V _{Ic}	g	7.1	
$V_{wstd} = (0.001246)(V_{lc})$	m³	0.0088	
Volume of gas metered dry, V _{mstd}		0.0000	
Volume of gas sample through gas meter, V _m	m³	1.0650	
Gas meter correction factor, Y _d	""		
-		0.9640	
Average dry gas meter temperature, T _m	°C	16.9	
Average pressure drop across orifice, ΔH	mmH₂O	32.7	
$V_{mstd} = ((0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)) / (T_m + 273)$	m³	0.9580	
Moisture content, B _{wo} & R _{wv}			
$B_{wo} = V_{wstd/}(V_{mstd} + V_{wstd})$	m³	0.0091	
B _{wo} as a percentage	% v/v	0.91	
Reported Water Vapour, checked with Tables in EN 14790, Rwv	% v/v	0.91	
Volume of gas metered wet, V _{mstw}			
$V_{mstw} = (V_{mstd})(100/(100 - R_{wv}))$	m³	0.9669	
Volume of gas metered at Oxygen Reference Conditions, V _{mstd@X%O2} & V	/ _{mstw@X%O₂}		
IED & Incinerates Hazardous Material? (Yes = no positive O₂ correction)	-	No	
% wet oxygen measured in gas stream, ACT%O _{2w}	% v/v	N/A	
% dry oxygen measured in gas stream, ACT%O _{2d}	% v/v	N/A	
% oxygen reference condition, REF%O₂	% v/v	N/A	
O_2 Reference Factor wet $(O_{2REFw}) = (21 - REF\%O_2) / (21 - ACT\%O_{2w})$		N/A	
O_2 Reference Factor dry (O_{2REFd}) = $(21 - REF\%O_2) / (21 - ACT\%O_{2d})$	_	N/A	
$V_{\text{mstw}@X\%oxygen} = (V_{\text{mstw}}) / (O_{2\text{REFw}})$	m³	N/A	
V _{mstd@X%oxygen} = (V _{mstd}) / (O _{2REFd})	m³	N/A	
Molecular weight of dry gas stream, M _d	- ""	IN/A	
		0.00	
CO ₂ (Estima	1 .	0.06	
O ₂ (Estimate	1	20.80	
Total	% v/v	20.86	
N ₂	% v/v	79.14	
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$	g/gmol	28.84	
Molecular weight of stack gas (wet), M _s			
$M_s = M_d(1 - (R_{wv}/100)) + 18(R_{wv}/100)$	g/gmol	28.74	
Velocity of stack gas, V _s			
Pitot tube velocity constant, K _p	-	34.97	
Velocity pressure coefficient, C _p	-	0.84	
Average of velocity heads, ΔP _{avg}	mmH₂O	10.13	
Average square root of velocity heads, VΔP	√mmH₂O	3.18	
Average stack gas temperature, T _s	°C	23.2	
$V_s = ((K_p)(C_p)(V\Delta P)(VT_s + 273)) / (V(M_s)(P_s))$	m/s	10.91	
Total flow of stack gas: Actual (Q _a), Wet (Q _{stw}), Dry (Q _{std}), Wet@O _{2REF} (O			
Area of stack, As	m ²	0.48	
$Q_a = (60)(A_s)(V_s)$	m³/min	314.2	
Conversion factor (K/mm.Hg), C _f		0.3592	
	m3/m:n		
$Q_{\text{stw}} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273)$ $Q_{\text{stw}} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273)$	m³/min	286.4	
$Q_{\text{std}} = ((Q_a)(P_s)(C_f)(1 - (R_{\text{wv}}/100))) / ((T_s) + 273)$	m³/min	283.7	
$Q_{\text{stwO}_2} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273) / (O_{2REFw})$	m³/min	N/A	
$Q_{\text{stdO}_2} = ((Q_a)(P_s)(C_f)(1 - (R_{wv}/100))) / ((T_s) + 273) / (O_{2REFd})$	m³/min	N/A	
Percent isokinetic, %I			
Nozzle diameter, D _n	mm	5.89	
Nozzle area, A _n	mm²	27.25	
Total sampling time, q	min	60	

Dunlop Oil Marine Ltd Grimsby Donaldson Extract Unit

TOTAL PARTICULATE MATTER: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
Sampling Times	_	13:40 - 14:40
Sampling Dates	-	09/10/2019
Sampling Device	-	ISO
Volume Sampled (REF)	m³	0.9669
Filter I.D. Number	-	47-64962
Start Filter Mass	g	0.14604
End Filter Mass	g	0.14620
Total Mass on Filter	g	0.00016
Probe Rinse I.D. Number	-	PR-47-64962
Start Probe Rinse Mass	g	2.58539
End Probe Rinse Mass	g	2.58600
Total Mass in Probe Rinse	g	0.00061
Total Mass Collected	mg	0.77
Calculated Concentration	mg/m³	0.80
Balance Uncertainty / LOD	mg/m³	0.18

Where: ISO stands for Manual Isokinetic Sampling Train

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	09/10/2019
Average Volume Sampled (REF)	m³	0.9669
Filter I.D. Number	-	47-64961
Start Filter Mass	g	0.14511
End Filter Mass	g	0.14523
Total Mass on Filter	g	0.00012
Probe Rinse I.D. Number	-	PR-47-64961
Start Probe Rinse Mass	g	2.64575
End Probe Rinse Mass	g	2.64597
Total Mass in Probe Rinse	g	0.00022
Total Mass Collected	mg	0.34
Calculated Concentration	mg/m³	0.35
Balance Uncertainty / LOD	mg/m³	0.18

TOTAL PARTICULATE MATTER: QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	17.1
Pre-Sampling Leak Rate	l/min	0.20
Post-Sampling Leak Rate	l/min	0.20
Allowable Leak Rate	l/min	0.40
Leak Test Acceptable	-	Yes
Water Droplets	Units	Run 1
Are Water Droplets Present	-	No
MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	5.6
Allowable MU	%	20.0
MU Acceptable	%	Yes
МО Ассертавіе	70	163
Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes
Isokinetic Criterion Compliance	Units	Run 1
Isokinetic Variation	%	99.1
Allowable Isokinetic Range	%	95 - 115
Isokineticity Acceptable	-	Yes
Weighing Uncertainty Criteria	Units	Run 1
Overall Weighing Uncertainty	± mg	0.32
Overall Weighing Uncertainty	± mg/m³	0.33
ELV [Daily ELV for IED]	mg/m³	50.00
Allowable Weighing Uncertainty	mg/m³	2.50
Weighing Uncertainty Acceptable	-	Yes
Filter Temperatures	Units	Run 1
Pre-Conditioning Temperature	°C	180
Post-Conditioning Temperature	°C	160
Maximum Filter Temperature	°C	24
Test Conditions	Units	Run 1

TOTAL PARTICULATE MATTER: QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	20.0
Pre-Sampling Leak Rate	l/min	0.20
Allowable Leak Rate	l/min	0.40
Leak Test Acceptable	-	Yes

Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	5.0
Blank Acceptable	-	Yes

Acetone / Water Rinse Blank	Units	Blank	
Acetone / Water Rinse Value	mg/l	2.7	
Allowable Blank	mg/l	10	
Blank Acceptable	-	Yes	

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1	
End of pipe sampling was necessary as there were no sampling ports installed on the stack.	х	

Dunlop Oil Marine Ltd Grimsby Donaldson Extract Unit

TOTAL PARTICULATE MATTER: MEASUREMENT UNCERTAINTY CALCULATIONS

		Value			Standa			
Measured Quantities	Symbol	Run 1		Symbol	Units	Run 1		
Sampled Volume (Actual)	V _m	1.0650		uV _m	m³	0.0213		
Sampled Gas Temperature	T _m	289.9		uT _m	K	2.0		
Sampled Gas Pressure	ρ_{m}	100.2		uρ _m	kPa	0.5		
Sampled Gas Humidity	H _m	0.0		uH _m	% v/v	1.0		
Leak	L	1.17		uL	%	-		
Mass of Particulate	m	0.77		um	mg	0.17		
Uncollected Mass	UCM	0.34		uUCM	mg	-		

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (Actual)	%	2.00		≤2%
Sampled Gas Temperature	%	0.69		≤1%
Sampled Gas Pressure	%	0.50		≤1%
Sampled Gas Humidity	%	1.00		≤1%
Leak	%	1.17		≤2%
Mass of Particulate	%	0.35		<5% of ELV
Uncollected Mass	%	-		-

		Uncertainty in			
Measured Quantities	Symbol	Units	Run 1		
Sampled Volume (STP)	V _m	m³	0.9580		
Leak	L	mg/m³	0.005		
Mass of Particulate	L _r	mg	0.770		
Uncollected Mass	UCM	mg	0.20		

		U
Measured Quantities	Units	Run 1
Sampled Volume (STP)	mg/m³	0.021
Leak	mg/m³	0.0054
Mass of Particulate	mg/m³	0.1758
Uncollected Mass	mg/m³	0.2030

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
Combined uncertainty	mg/m³	0.27
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.53
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.79
Reported Uncertainty	mg/m³	0.79
Expanded uncertainty (95% confidence), without Oxygen Correction	%	66.3
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	99.5
Reported Uncertainty	%	99.5

Dunlop Oil Marine Ltd Grimsby Donaldson Extract Unit